首页
网站建设
article
/
2024/11/20 8:43:18
http://www.mzlw.cn/7NeWo34l.shtml
相关文章
kwin模糊度代码解读
本篇文档主要讲述kwin绘制模糊特效的流程,和相关函数的理解注释。 相关文件和函数 src/plugins/windowsystem/windoweffects.cpp 主要进行窗口的查询和窗口属性的设置。 // 启用或禁用窗口模糊效果,根据给定的窗口ID、启用标志和区域,启用…
阅读更多...
KWin、libdrm、DRM从上到下全过程 —— drmModeAddFBxxx(1)
序言 最近在研究libdrm、DRM以及KWin,发现要真正理解Linux图形栈从上到下的机制,最好的、最易于理解的方法是将KWin、libdrm和DRM由上到下的调用过程暨代码统一进行研究,这样才能更好地理清其中的关系,把握总体全貌,因…
阅读更多...
KWin事件总结和相关类介绍
KWin事件总结和相关类介绍 目录 KWin事件总结和相关类介绍 1、事件相关模块 1.1 事件类型 1.2 事件管理 1.3 事件过滤器 2、KWin其他模块整理 2.1 窗口 2.2 Item 2.3 scene 3、事件传递流程 3.1 事件整体流程 3.2 事件传递时序图 4、事件流程样例 4.1 鼠标拖动修…
阅读更多...
java 字符串编码转换 字符集/编码的见解
转http://www.cnblogs.com/kenkofox/archive/2010/04/23/1719009.html !!!Java要转换字符编码:就一个String.getBytes("charsetName")解决,返回的字节数组已经是新编码的了~~至于后边是new String组装还是网…
阅读更多...
A3C DPPO
跟着莫烦老师的强化学习教程时做的笔记,原贴:https://mofanpy.com/tutorials/machine-learning/reinforcement-learning/ A3C Asynchronous Advantage Actor-Critic 一句话概括 A3C: Google DeepMind 提出的一种解决 Actor-Critic 不收敛问题的算法. …
阅读更多...
【强化学习】A3C原理
先解释一下什么叫异步、什么叫并发: **异步:**和同步相对,同步是顺序执行,而异步是彼此独立,在等待某个事件的过程中继续做自己的事,不要等待这一事件完成后再工作。线程是实现异步的一个方式,异…
阅读更多...
【深度强化学习】A3C
上一篇对Actor-Critic算法的学习,了解Actor-Critic的流程,但由于普通的Actor-Critic难以收敛,需要一些其他的优化。而Asynchronous Advantage Actor-Critic(A3C)就是其中较好的优化算法。 A3C Introduction 为了打破…
阅读更多...
强化学习之AC、A2C和A3C
阅读本文可参考我以前的文章《强化学习实践教学》https://tianjuewudi.gitee.io/2021/07/16/qiang-hua-xue-xi-shi-jian-jiao-xue/#toc-heading-29,其中的连续动作空间上求解RL章节是本文的基础,其中的DDPG和Actor-Critic除了Target网络外其余都一致。 …
阅读更多...
算法 源码 A3C
A3C 源码解析 标签(空格分隔): 增强学习算法 源码 该代码实现连续空间的策略控制 """ Asynchronous Advantage Actor Critic (A3C) with continuous action space, Reinforcement Learning. Using: tensorflow r1.3 gym 0.8…
阅读更多...
A2C和A3C
A2C Advantage Actor-Critic 是一个随机变量,在采样数据不非常充足的情况下,方差会很大,如何提高训练的稳定性呢?直接估算G的期望值, 让期望值去代替采样到的值。 在Q-learning中有两种Critic 用MC会更精确但TD会更稳…
阅读更多...
AC A2C A3C
基本概念 Actor-Critic(AC) AC全称Actor-Critic,中文名演员-评论家算法。AC算法是一种既基于值函数、又基于策略函数的算法。这里所说的基于值函数的算法,主要指的是算法本身输出的所有动作的价值,根据最高价值来选择…
阅读更多...
【强化学习】Asynchronous Advantage Actor-Critic(A3C)
1 A3C简介 A3C全称Asynchronous Advantage Actor-Critic,顾名思义,它采用的是Actor-Critic的形式(需要回顾Actor-Critic的,可以点击这里【强化学习】Actor-Critic(演员-评论家)算法详解)。为了…
阅读更多...
深度强化学习算法 A3C (Actor-Critic Algorithm)
跟着李宏毅老师的视频,复习了下AC算法,新学习了下A2C算法和A3C算法,本文就跟大家一起分享下这三个算法的原理及tensorflow的简单实现。 视频地址:https://www.bilibili.com/video/av24724071/?p4 1、PG算法回顾 在PG算法中&#…
阅读更多...
A3C框架
文章目录 一、动机二、A3C算法 一、动机 基于AC框架的算法很难收敛,因此可以采用DQN的经验回放的方法降低数据间的相关性,基于这种思想A3C算法采用异步的思想降低数据间的差异性,具体做法:在多个线程里与环境进行交互,…
阅读更多...
深度强化学习-A3C算法
论文地址:https://arxiv.org/pdf/1602.01783v1.pdf A3C(异步优势演员评论家)算法,设计该算法的目的是找到能够可靠的训练深度神经网络,且不需要大量资源的RL算法。 在DQN算法中,为了方便收敛使用了经验回放…
阅读更多...
论文笔记之A3C
A2C是一个很好的policy-based框架,是一种on-policy算法。但是由于其Critic部分是一个输入信号连续的nn,有神经网络基础的应该知道,这样的网络是学不到东西的。根据A2C中Actor的更新公式,既然Advantage Function估计不准确…
阅读更多...
A3C学习笔记
由AC到A3C Actor-Critic(AC)参考 Actor-Critic(AC) Actor-Critic是基于Policy-Gradient的。 在AC基础上有了A2C和A3C,具体介绍: 强化学习AC、A2C、A3C算法原理与实现! A3C策略参数的梯度更新和Actor-Critic相比,增加了策略 π \…
阅读更多...
强化学习—A3C
Asynchronous Advantage Actor-Critic A3C (Asynchronous Advantage Actor-Critic) 是一种多线程并行化的强化学习算法,它在强化学习任务中使用多线程异步执行多个智能体,以加快训练过程并提高策略的稳定性。A3C 是在传统的 Advantage Actor-Critic (A2…
阅读更多...
A3C算法
1. A3C的引入 上一篇Actor-Critic算法的代码,其实很难收敛,无论怎么调参,最后的CartPole都很难稳定在200分,这是Actor-Critic算法的问题。但是我们还是有办法去有优化这个难以收敛的问题的。 回忆下之前的DQN算法,为了…
阅读更多...
[A3C]:算法原理详解
强化学习: A3C算法原理 深度强化学习框架使用异步梯度下降来优化深度神经网络控制器。提出了四种标准强化学习算法的异步变体,并证明并行actor-learners在训练中具有稳定作用,使得四种方法都能成功地训练神经网络控制器。首先明确什么是A3C?…
阅读更多...
推荐文章
metricbeat发送监控数据到远程Elasticsearch
strtr php,PHP: strtr - Manual
System.Runtime.InteropServices.COMException (0x80040154): 没有注册类 (异常来自 HRESULT:0x80040154 (REGDB_E_CL
Opencv 处理图片增加文字
python求正弦函数面积
selenium 清空缓存
服务器配置网站环境要多久,亲自配置网站环境做网站,这点你必须学会
软件测试工程师简历模板
web前端期末大作业 html+css+javascript化妆品网页设计实例 企业网站制作
5步教给你如何进行网站排名优化?
为什么MIP-Cache存在
现在建网站你会选择自己建站还是在线建站平台?
ngix 作用
关于ngix的使用心得
widows环境下配置NGIX+PHP服务器
Ngix+FileZillaServer搭建图片服务器
ubuntu18.01 配置ngix+php5.6
ngix安装配置